LETTER

The study on a mixed-phase I–N-TiO₂ for the treatment of azithromycin wastewater under visible light

Xiaowei Qian · Ning Zhang · Mingxia Xu · Chao Chen

Received: 10 September 2010/Accepted: 2 December 2010/Published online: 14 December 2010 © Springer Science+Business Media, LLC 2010

Introduction

Photocatalysis has attracted worldwide research interest for several decades because of its potential utilization of solar energy. It has been demonstrated that TiO₂ is one of the most significant inorganic photocatalytic materials [1, 2]. However, due to the large band gap of ~ 3.2 eV, TiO₂ can only be activated in UV region [3]. To enhance its lightabsorbing properties and photocatalytic efficiency under visible light, many attempts have been carried out, such as selective ion doping [4–12], noble metal supporting [13, 14], and composite-type semiconductor preparation [15–18], etc. Among these attempts, TiO₂ materials modified with two types of non-metal ions have attracted great attention over recent years, owing to their enhanced photocatalytic activity, for instance, F-I, C-N, N-F, N-P, and B-N-codoped TiO₂ [19–24]. In addition, studies show that TiO₂ with mixed phases could enhance photocatalytic activity because of the more efficient electron-hole separation on the "hot spots" at the rutile-anatase interfaces [25, 26]. In contrast to the above-doped materials, the doping I and N in TiO₂ lattice for substituting the similarradius Ti^{4+} and O^{2-} , respectively, has been much less explored [27]. Up to now, only one literature about N-I-TiO₂ has been found, which is synthesized by

Electronic supplementary material The online version of this article (doi:10.1007/s10853-010-5139-3) contains supplementary material, which is available to authorized users.

X. Qian \cdot N. Zhang (\boxtimes) \cdot M. Xu \cdot C. Chen (\boxtimes) Department of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China e-mail: nzhang.ncu@163.com

C. Chen e-mail: chaochen@ncu.edu.cn hydrolysis method, and N–I-TiO₂ exists only in anatase phase [27]. In this work, using precipitation-grinding method and controlling the calcined temperature at 350 °C, we firstly synthesized a mixed-phase I–N-TiO₂ material. It could be expected that I–N-codoped TiO₂ with mixed phases may have a significant effect on further improving the photocatalytic activity of TiO₂ and inducing a remarkable visible-light activity.

Azithromycin, which played a major role in the clinical therapy of the infection when the SARS crisis broke, is a kind of macrolide antibiotics commonly used in clinic. While the Azithromycin pharmaceutical wastewater is considered as an important class of organic pollutants, because of its potential hazardous effects on human being and the aquatic ecosystem [28, 29]. Therefore, it is imperative to develop effective methods for treatment of APW. Recently, the application of TiO₂ in environmental purification appears to be very attractive, due to the environmentally friendly purification process. In this study, the mixed-phase I–N-TiO₂ was applied to treat APW. The result shows that the mixed-phase I–N-TiO₂ exhibits superior photocatalysis activity of APW under visible light.

Experimental

Sample preparation

All chemicals (Sinopharm Chemical Reagent Co., Ltd) are reagent grade and without further purification. The Azithromycin pharmaceutical wastewater solution was provided by the Jiangxi Baishen Pharmaceutical Co., Ltd.

Ti $(OC_4H_9)_4$ (8 ml) was dripped into 50 ml aqueous of HIO₃ (1.24 g) under vigorous stirring, which gave yellow-colored precipitate. The resulted mixture was aged for

4 days at room temperature (25 °C), and then dried at 80 °C. To prepare a homogeneous sample, the dried precipitate with 0.21 g urea was mixed by milling in an agate mortar for 8 h with a rotating speed of 300 rpm. The final mixed-phase I–N-TiO₂ was obtained by calcination at 350 °C for 3 h. For comparison, the I-doped TiO₂ or N-doped TiO₂ was synthesized with the similar procedure but without urea or HIO₃ doping.

Characterization

The X-ray diffraction patterns were collected on a Bede XRD DI SYSTEM with Cu K_{α} as the incident radiation. The surface area, pore parameter, and average pore diameter were analyzed by N₂ physisorption at 77 K on Micromeritics ASAP 2020 system. Surface areas and pore size distributions were determined using BET $(P/P_0 =$ 0.05-0.30) and BJH methods, respectively, both through Autosorb for Windows[®] software, version 3.03. Raman spectra were measured with NXR FT-RAMAN (Thermo Nicolet) Raman Spectrometer using a 1,064 nm laser at a power of 20-50 mW under backscattering conditions. UV-Vis reflectance spectra were obtained on the Shimadzu 2501PC UV-Vis spectrophotometer, using BaSO₄ as the background. X-ray photoelectron spectroscopy (XPS) measurements were performed on a PHI Quantum 2000 XPS system with a monochromatic Al K_{α} resource and a charge neutralizer.

Photocatalytic reaction

Photochemical experiments were conducted in a jacketed cylindrical glass reactor, the visible-light source was a 500 W halogen-tungsten lamp equipped with a 400-nm UV cutoff filter to effectively remove the UV portion, which was put 25 cm above the surface of the liquid in the reactor (the light intensity in the visible-light region at the surface of the liquid was about 32 mW/cm², and the effect of the UV portion of lamp light can be neglected). Oxygen was bubbled into the solution during the entire experiment at room temperature. Prior to illumination, the suspension was stirred in darkness for 30 min to achieve the adsorptiondesorption equilibrium. For comparison, commercial P25 (Degussa P25, Degussa Chemical, Germany) was selected as a reference sample. The photocatalytic activity was identified by determining the Chemical Oxygen Demand (COD) of the reaction liquid using potassium dichromate method. COD removal rate (D %) was calculated by:

$$D(\%) = \left[\left(\text{COD}_0 - \text{COD}_t \right) / \text{COD}_0 \right] \times 100$$

where COD_0 and COD_t are the COD of initial and residual wastewater, respectively.

Results and discussion

Structural characteristics of samples

The crystalline structure, crystal size, and BET surface areas of all samples are listed in Table 1. It can be seen that all the doped samples exhibited larger surface area and smaller crystal size than the reference P25. The I-N-TiO₂, with the highest photoactivity (seen in the section of photocatalytic activity under visible light), shows modest surface area and crystal size, though both of them change somewhat with the adding of dopant iodine or nitrogen. XRD was used to determine the structures of the catalysts. The patterns of all samples (Fig. 1) reveal that the mono-doped samples display only anatase phase. However, the codoped TiO₂ exhibits predominantly anatase phase with a small amount of rutile phase (corresponding to the peak at $2\theta = 27.5$ [30, 31]. According to Hurum et al. [26], the co-existence of rutile and anatase is more important to the activity of the catalyst than the only presence of anatase. The presence of small rutile crystallites creates a structure, which results in rapid electron transfer from rutile to lower energy anatase lattice trapping sites under visible illumination, thus leading to a more stable charge separation. It is noteworthy that the anatase-to-rutile phase transformation temperature of I-N-TiO₂ is only 350 °C, which is much lower than that of pure TiO₂ (\sim 700 °C). Due to the lattice distortion and bond weakening resulted from the introduction of I and N into TiO₂ lattice [32], the I-N codoping has an effect on decreasing the activation energy for the rutile formation [18], which facilitates the phase transformation.

Raman spectra analysis

The Raman spectra of all samples are shown in Fig. 2. I-TiO₂ and N-TiO₂ exhibit Raman bands at ~149, 401, 518, and 640 cm⁻¹, which are assigned to E_g , B_{1g} , $A_{1g} + B_{1g}$, and E_g modes in anatase phase [33]. For I–N-TiO₂, the peak at 448 cm⁻¹ belongs to E_g phonon mode of

 Table 1
 Physicochemical properties of the reference and prepared samples

Samples	Phase XRD	$S_{\rm BET}$ (m ² /g)	Pore size (nm)	Pore volume (cm ³ /g)	Crystal size (nm) ^a XRD
P25	$A + R^b$	48	21	0.25	30
N-TiO ₂	А	176	39	0.24	15.1
I-TiO ₂	А	169	72	0.34	7.2
I–N-TiO ₂	A + R	107	64	0.23	10.2
N-TiO ₂ I-TiO ₂ I–N-TiO ₂	A A A + R	176 169 107	39 72 64	0.24 0.34 0.23	15.1 7.2 10.2

^a Obtained using Scherrer equation

^b A and R denote anatase and rutile, respectively

Fig. 1 XRD patterns of N-TiO₂, I-TiO₂, and I–N-TiO₂

Fig. 2 Raman spectra of N-TiO₂, I-TiO₂ and I-N-TiO₂

rutile-type [34], and the other peaks are attributed to anatase phase. The results indicate that both anatase and rutile phase appear in the codoped TiO_2 , which is in accordance with the XRD results.

UV-Vis diffuse reflectance spectra

The UV–Vis diffuse reflectance spectra of all the samples with different dopings are shown in Fig. 3. In comparison with pure TiO₂ ($E_g = 3.2 \text{ eV}$, $\lambda_{max} < 387 \text{ nm}$), photoabsorption of TiO₂ doped with N, I, and N–I all exhibit red shift (400 nm for N-TiO₂, 470 nm for I-TiO₂, and 570 nm for N–I-TiO₂), which is probably due to the formation of impurity energy level within the band gap [35]. Further inspection of the three doped TiO₂ reveals that the I–N-TiO₂ shows the strongest visible-light absorption and

Fig. 3 UV-Visible spectra of N-TiO₂, I-TiO₂, and I-N-TiO₂

narrowest band gap (2.16 eV) than the other two. This suggests that I–N codoping resulted in a synergistic effect, which could significantly improve the visible-light absorption and reduce the band gap of TiO_2 .

XPS analysis

XPS analyses were carried out to evaluate the electronic environment and valence state of the doped ions in TiO₂. The XPS spectrum of I_{3d5} region presents three peaks at binding energies of 618.5, 624, and 629.2 eV (Fig. 4a). The peak corresponding to 629.2 eV is assigned to I^{5+} that substitutes Ti⁴⁺ in TiO₂ lattice, owing to their similar ionic radius [6]. The other two appeared at 618.5 and 624 eV should be attributed to I^- and I^{7+} , respectively, due to the disproportionation of iodate ion. Figure 4b shows a major peak at 399.8 eV, which is typical for the surface adsorbed N-containing compounds (e.g. NH_x and NO_x adsorbed on the surface) [19, 31, 36]. The peak at 397.05 eV is assigned to nitrogen in the TiO₂ lattice as O-Ti-N, which is similar to previous studies [37]. Therefore, it is reasonable to be thought that both I and N have been doped into the bulk of TiO₂.

As shown in Fig. 5, the O_{1s} peak of various samples has a similar binding energy. The main peak is at 529.7 eV and the shoulder peak at 531.7 eV, which could be attributed to the lattice oxygen and surface hydroxyl [32], respectively. It is interesting to note that the total amount of surface hydroxyl oxygen of codoped TiO₂ is larger than that of those mono-doped TiO₂ (Fig. 5d). The surface hydroxyl groups can not only act as the active adsorption sites for the molecular oxygen and organic compound, but also block the recombination of electron–hole pairs and capture

Fig. 5 O_{1s} XPS spectra of **a** I–N-TiO₂, **b** I-TiO₂, **c** N-TiO₂, and **d** An expanded view of O_{1s} XPS spectra of the surface hydroxyl peak

photogenerated holes to produce hydroxyl radical ([•]OH). As it is known, hydroxyl radical is recognized as an important factor affecting the photocatalytic activity and correlated well with the photocatalytic activity of catalyst [38]. It is important for both the photocatalytic oxidation activity and to mineralize organic pollutants [2, 39, 40]. Additionally, a small amount of C element was also detected in the sample of I–N-TiO₂ (283.3, 284.5, and 287.1 eV, Fig. S1), which was

ascribed to the adventitious hydrocarbon from the XPS instrument itself, the residual carbon from precursor solution and adventitious element carbon [6].

Photocatalytic activity under visible light

As illustrated in Fig. 6, after a 12-h reaction under visible light, the commercial P25 was nearly inactive for the

Fig. 6 Effect of type of samples on APW degradation percentage after a 12-h reaction

photodegradation of APW, and I–N-TiO₂ demonstrated the best photocatalytic activity (57% degradation of APW) as compared with I-TiO₂ (35%) and N-TiO₂ (8%). Based on the above characterization results and discussions, we proposed that its superior activity could be ascribed to the mixed-phase structure, the synergetic actions of the iodine and nitrogen, and the relatively more surface hydroxyl groups. According to our knowledge, this is the first time that the non-metal-doped TiO₂ materials have been applied in the photocatalytic treatment of Pharmaceutical wastewater.

Conclusions

In summary, a new I–N-TiO₂ with mixed phases was obtained by precipitation-grinding method. As compared with N-TiO₂ or I-TiO₂ catalysts, the mixed-phase I–N-TiO₂ exhibits a higher photocatalytic activity under visible irradiation during the photocatalytic treatment of APW. The higher activity of the codoped TiO₂ may be ascribed to the mixed-phase structure, the synergetic interactions of the iodine and nitrogen, and the relatively more surface hydroxyl groups. Further studies will be focused on the optimization of the preparation conditions of photocatalysts and the photocatalytic treatment conditions.

Acknowledgements This work was supported by the Natural Science Foundation of Jiangxi Province, P. R. China (No. 2007GZH2643), and the Foundation of Educational Department of Jiangxi Province, P. R. China (No. GJJ08020).

References

- 1. Fujishima A, Honda K (1972) Nature 238:37
- 2. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Chem Rev 95:69
- 3. Chio W, Termin A, Hoffman MR (1994) J Phys Chem 98:13669
- 4. Chen XF, Wang WC, Hou YD, Huang JH, Wu L, Fu XZ (2008) J Catal 255:59
- Yu CL, Zhou WQ, Yang K, Rong G (2010) J Mater Sci 45:5756. doi:10.1007/s10853-010-4646-6
- Hong XT, Wang ZP, Cai WM, Zhang J, Yang YZ (2005) Chem. Mater 17:1548
- Randeniya LK, Murphy AB, Plumb IC (2008) J Mater Sci 43:1389. doi:10.1007/s10853-007-2309-z
- Masanori H, Yoshiko I (2009) J Mater Sci 44:6135. doi:10.1007/ s10853-009-3848-2
- Chen C, Long MC, Zeng H, Cai WM, Zhou BX, Zhang JY, Wu YH, Ding DX, Wu DY (2009) J Mol Catal A 314:35
- Shet S, Ahn KS, Wang HL (2010) J Mater Sci 45:5218. doi: 10.1007/s10853-010-4561-x
- Songara S, Patra MK, Manoth M, Saini L, Gupta V, Gowd GS, Vadera SR, Kumar N (2010) J Photochem Photobiol A 209:68
- Wei HY, Wu YS, Lun N, Zhao F (2004) J Mater Sci 39:1305. doi: 10.1023/B:JMSC.0000013889.63705.f3
- Rosseler O, Shankar MV, Du MK-L, Schmidlin L, Keller N, Keller V (2010) J Catal 269:179
- Paramasivam I, Macak JM, Schmuki P (2008) Electrochem Commun 10:71
- Kim HJ, Lee SH, Han Y, Park JK (2006) J Mater Sci 41:6150. doi:10.1007/s10853-006-0574-x
- Wang C, Xu BQ, Wang XM, Zhao JC (2005) J Solid State Chem 178:3500
- Chen JY, Qian YX, Wei XZ (2010) J Mater Sci 45:6018. doi: 10.1007/s10853-010-4685-z
- Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483
- Li D, Ohashi N, Hishita S, Kolodiazhnyi T, Haneda H (2005) J Solid State Chem 178:3293
- Chen C, Cai WM, Long MC, Zhang JY, Zhou BX, Wu YH, Wu DY (2010) J Hazard Mater 178:560
- Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Czoska AM, Paganini MC, Giamello E (2008) Chem Mater 20:3706
- 22. Long R, English NJ (2010) J Phys Chem C114:11984
- Shao GS, Ma TY, Zhang XJ (2009) J Mater Sci 44:6754. doi: 10.1007/s10853-009-3628-z
- Suil I, Alexander O, Regina B, Felipe G, Sergio PJ, Mintcho ST, Dominic SW, Richard ML (2007) J Am Chem Soc 129:13790
- 25. Bacsa RR, Kiwi J (1998) Appl Catal B 16:19
- Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545
- 27. Zhou L, Deng J, Zhao YB, Liu WB, An L, Chen F (2009) Mater Chem Phys 117:522
- Calza P, Massolino C, Monaco G, Medana C, Baiocchi C (2008) J Pharm Biomed 48:315
- Hapeshi E, Achilleos A, Vasquez ML, Michael C, Xekoulotakis NP, Mantzavinos D, Kassinos D (2010) Water Res 44:1737
- Kang XW, Chen SW (2010) J Mater Sci 45:2696. doi: 10.1007/s10853-010-4254-5
- Su WY, Zhang YF, Li ZH, Wu L, Wang XX, Li JQ, Fu XZ (2008) Langmuir 24:3422
- 32. Tojo S, Tachikawa T, Fujitsuka M, Majima T (2008) J Phys Chem C 112:14948
- 33. Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321
- 34. Chaves A, Katiyar RS, Porto SPS (1974) Phys Rev B10:3522

Deringer

- 35. Long MC, Cai WM, Wang ZP, Liu GZ (2006) Chem Phys Lett 420:71
- Asahi R, Morikawa T, Ohwaki T, Aoki K, Tag Y (2001) Science 293:269
- 37. Parida KM, Naik B (2009) J Colloid Interface Sci 333:269
- 38. Xiao Q, Ouyang LL (2009) Chem Eng J 148:248
- 39. Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugilara S (2003) Appl Catal B Environ 42:403
- 40. Litter MI (1999) Appl Catal B Environ 23:89